Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676073

RESUMO

In the railway sector, rolling stock and infrastructure must be maintained in perfect condition to ensure reliable and safe operation for passengers. Climate change is affecting the urban and regional infrastructure through sea level rise, water accumulations, river flooding, and other increased-frequency extreme natural situations (heavy rains or snows) which pose a challenge to maintenance. In this paper, the use of artificial intelligence based on predictive maintenance implementation is proposed for the early detection of degraded conditions of a bridge due to extreme climatic conditions. For this prediction, continuous monitoring is proposed, with the aim of establishing alarm thresholds to detect dangerous situations, so restrictions could be determined to mitigate the risk. However, one of the main challenges for railway infrastructure managers nowadays is the high cost of monitoring large infrastructures. In this work, a methodology for monitoring railway infrastructures to define the optimal number of transductors that are economically viable and the thresholds according to which infrastructure managers can make decisions concerning traffic safety is proposed. The methodology consists of three phases that use the application of machine learning (Random Forest) and artificial cognitive systems (LSTM recurrent neural networks).

2.
Sensors (Basel) ; 24(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38676279

RESUMO

This study uses a wind turbine case study as a subdomain of Industrial Internet of Things (IIoT) to showcase an architecture for implementing a distributed digital twin in which all important aspects of a predictive maintenance solution in a DT use a fog computing paradigm, and the typical predictive maintenance DT is improved to offer better asset utilization and management through real-time condition monitoring, predictive analytics, and health management of selected components of wind turbines in a wind farm. Digital twin (DT) is a technology that sits at the intersection of Internet of Things, Cloud Computing, and Software Engineering to provide a suitable tool for replicating physical objects in the digital space. This can facilitate the implementation of asset management in manufacturing systems through predictive maintenance solutions leveraged by machine learning (ML). With DTs, a solution architecture can easily use data and software to implement asset management solutions such as condition monitoring and predictive maintenance using acquired sensor data from physical objects and computing capabilities in the digital space. While DT offers a good solution, it is an emerging technology that could be improved with better standards, architectural framework, and implementation methodologies. Researchers in both academia and industry have showcased DT implementations with different levels of success. However, DTs remain limited in standards and architectures that offer efficient predictive maintenance solutions with real-time sensor data and intelligent DT capabilities. An appropriate feedback mechanism is also needed to improve asset management operations.

3.
Sensors (Basel) ; 24(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38610487

RESUMO

In a cooling system for radio astronomy receivers, maintaining cold heads and compressors is essential for consistent performance. This project focuses on monitoring the power currents of the cold head's motor to address potential mechanical deterioration, which could jeopardize the overall functionality of the system. Using Hall effect sensors, a microcontroller-based electronic board, and artificial intelligence, the system detects and predicts anomalies. The model operates using an unsupervised approach based on incremental clustering. Since potential fault scenarios can be multiple and often challenging to simulate or identify during training, the system is initially trained using known operational categories. Over time, the system adapts and evolves by incorporating new data, which can be assigned to existing categories or, in the case of new anomalies, form new categories. This incremental approach enables the system to enhance its performance over the years, adapting to new anomaly scenarios and ensuring precise and reliable monitoring of the cold head's health.

4.
Materials (Basel) ; 17(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591631

RESUMO

Conveyors play a very important role in modern manufacturing processes, and one of the most popular types is the belt conveyor. The main elements of a conveyor include a conveyor belt, roller sets, a supporting frame and a drive and control system. The reliable operation of the conveyor depends on the strength and durability of individual elements (especially the belt). Conveyor belts are made from various materials and have received a lot of attention in the scientific and research community. This article presents tests of the strength of the rubber belt material and its damage under load. The belt consists of two internal layers covered with a PVC coating on the outside, and the nominal belt thickness was 2 mm. In the experiment, various configurations of longitudinal and transverse damage were verified, and statistical methods were used to analyze the results. The obtained test results provided a new understanding of the propagation of conveyor belt damage and helped to improve the strain gauge-based monitoring system.

5.
Heliyon ; 10(5): e26282, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439821

RESUMO

Vibration Analysis (VA) is the most commonly used technique in predictive maintenance. It allows the diagnosis of faults, especially those in the early stages. The use of VA is important for maintenance costs and downtime savings, making decisions about repair and total replacement. The method has been applied in many industries and proven to be effective. It is applicable to rotating, non-rotating equipment, continuous processes or even construction structure. In this paper, vibration analysis fundamentals as well as many studies on the method's application are reviewed. The purpose is to give an overview of how vibration analysis is used in many industries including petroleum to show its potential in petroleum industry. VA has been used in many areas from transportation, refinery to drilling and production. However, there are still rooms for improvement and implementation. One potential application is detecting faults in Electric Submersible Pump (ESP) system. ESP is located downhole making it susceptible to faults and defects that could be difficult to detect using conventional methods. These faults and defects could lead to reduced pump performance or even complete failure that require replacement. Thus, it is important to monitor and analyze vibration of ESP components, specifically pump and motor. Different studies on the topic are also reviewed and discussed. Some studies have been conducted showing that analyzing ESP vibration data helps predict early problems and identifying the causes. Vibration data were also used in principal component analysis models to predict and identify problems as presented in some works. However, principal component analysis could discharge the data models to be unable to correctly predict and determine the faults. VA is a practical technique to monitor and diagnose machine's health. It is important to research VA further and apply it more in petroleum industry, especially in production system. Applications of VA could increase machine's lifespan, reduce maintenance cost and would be useful in optimization.

6.
Artif Intell Med ; 149: 102807, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462276

RESUMO

BACKGROUND: The breakdown of healthcare facilities is a huge challenge for hospitals. Medical images obtained by Computed Tomography (CT) provide information about the patients' physical conditions and play a critical role in diagnosis of disease. To deliver high-quality medical images on time, it is essential to minimize the occurrence frequencies of anomalies and failures of the equipment. METHODS: We extracted the real-time CT equipment status time series data such as oil temperature, of three equipment, between May 19, 2020, and May 19, 2021. Tube arcing is treated as the classification label. We propose a dictionary-based data-driven model SAX-HCBOP, where the two methods, Histogram-based Information Gain Binning (HIGB) and Coefficient improved Bag of Pattern (CoBOP), are implemented to transform the data into the bag-of-words paradigm. We compare our model to the existing predictive maintenance models based on statistical and time series classification algorithms. RESULTS: The results show that the Accuracy, Recall, Precision and F1-score of the proposed model achieve 0.904, 0.747, 0.417, 0.535, respectively. The oil temperature is identified as the most important feature. The proposed model is superior to other models in predicting CT equipment anomalies. In addition, experiments on the public dataset also demonstrate the effectiveness of the proposed model. CONCLUSIONS: The two proposed methods can improve the performance of the dictionary-based time series classification methods in predictive maintenance. In addition, based on the proposed real-time anomaly prediction system, the model assists hospitals in making accurate healthcare facilities maintenance decisions.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Hospitais , Atenção à Saúde
7.
Sensors (Basel) ; 24(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38475022

RESUMO

The critical challenge of estimating the Remaining Useful Life (RUL) of MoSi2 heating elements utilized in pusher kiln processes is to enhance operational efficiency and minimize downtime in industrial applications. MoSi2 heating elements are integral components in high-temperature environments, playing a pivotal role in achieving optimal thermal performance. However, prolonged exposure to extreme conditions leads to degradation, necessitating precise RUL predictions for proactive maintenance strategies. Since insufficient failure experience deals with Predictive Maintenance (PdM) in real-life scenarios, a Generative Adversarial Network (GAN) generates specific training data as failure experiences. The Remaining Useful Life (RUL) is the duration of the equipment's operation before repair or replacement, often measured in days, miles, or cycles. Machine learning models are trained using historical data encompassing various operational scenarios and degradation patterns. The RUL prediction model is determined through training, hyperparameter tuning, and comparisons based on the machine-learning model, such as Long Short-Term Memory (LSTM) or Support Vector Regression (SVR). As a result, SVR reflects the actual resistance variation, achieving the R-Square (R2) of 0.634, better than LSTM. From a safety perspective, SVR offers high prediction accuracy and sufficient time to schedule maintenance plans.

8.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475102

RESUMO

This research focuses on the analysis of vibration of a compression ignition engine (CIE), specifically examining potential failures in the Fuel Rail Pressure (FRP) and Mass Air Flow (MAF) sensors, which are critical to combustion control. In line with current trends in mechanical system condition monitoring, we are incorporating information from these sensors to monitor engine health. This research proposes a method to validate the correct functioning of these sensors by analysing vibration signals from the engine. The effectiveness of the proposal is confirmed using real data from a Common Rail Direct Injection (CRDi) engine. Simulations using a GT 508 pressure simulator mimic FRP sensor failures and an adjustable potentiometer manipulates the MAF sensor signal. Vibration data from the engine are processed in MATLAB using frequency domain techniques to investigate the vibration response. The results show that the proposal provides a basis for an efficient predictive maintenance strategy for the MEC engine. The early detection of FRP and MAF sensor problems through a vibration analysis improves engine performance and reliability, minimizing downtime and repair costs. This research contributes to the advancement of monitoring and diagnostic techniques in mechanical engines, thereby improving their efficiency and durability.

9.
Heliyon ; 10(3): e25120, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317899

RESUMO

An aircraft is a highly intricate system that features numerous subsystems, assemblies, and individual components for which regular maintenance is inevitable. The operational efficiency of an aircraft can be maximised, and its maintenance needs can be reduced using an effective yet automatic AI-based health monitoring systems which are more efficient as compared to designing and constructing expensive and harder to operate engine testbeds. It has been observed that aircraft engine anomalies such as undergoing flameouts can occur due to the rapid change in the temperature of the engine. Engine oil temperature and cylinder head temperature, two measures connected to this issue, might be affected differently depending on flight modes and operational conditions which in turn hamper AI-based algorithms to yield accurate prediction on engine failures. In general, previous studies lack comprehensive analysis on anomaly prediction in piston engine aircraft using modern machine learning solutions. Furthermore, abrupt variation in aircraft sensors' data and noise result in either overfitting or unfavourable performance by such techniques. This work aims at studying conventional machine learning and deep learning models to foretell the possibility of engine flameout using engine oil and cylinder head temperatures of a widely used Textron Lycoming IO-540 six-cylinder piston engine. This is achieved through pre-processing the data extracted from the aircraft's real-time flight data recorder followed by prediction using specially designed multi-modal regularised Long Short-Term Memory network to enhance generalisation and avoid overfitting on highly variable data. The proposed architecture yields improved results with root mean square error of 0.55 and 3.20 on cylinder head and engine oil temperatures respectively averaged over three case studies of five different flights. These scores are significantly better i.e., up to 84% as compared to other popular machine learning predictive approaches including Random Forest, Decision Tree Regression, Artificial Neural Networks and vanilla Long Short-Term Memory networks. Through performance evaluation, it can be established that the proposed system is capable of predicting engine flameout 2 minutes ahead and is suitable for integration with the software system of aircraft's engine control unit.

10.
Sensors (Basel) ; 24(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38400462

RESUMO

In traditional textile manufacturing, downstream manufacturers use raw materials, such as Nylon and cotton yarns, to produce textile products. The manufacturing process involves warping, sizing, beaming, weaving, and inspection. Staff members typically use a trial-and-error approach to adjust the appropriate production parameters in the manufacturing process, which can be time consuming and a waste of resources. To enhance the efficiency and effectiveness of textile manufacturing economically, this study proposes a query-based learning method in regression analytics using existing manufacturing data. Query-based learning allows the model training to evolve its decision-making process through dynamic interactions with its solution space. In this study, predefined target parameters of quality factors were first used to validate the training results and create new training patterns. These new patterns were then imported into the solution space of the training model. In predicting product quality, the results show that the proposed query-based regression algorithm has a mean squared error of 0.0153, which is better than those of the original regression-related methods (Avg. mean squared error = 0.020). The trained model was deployed as an application programing interface (API) for cloud-based analytics and an extensive auto-notification service.

11.
Sensors (Basel) ; 24(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339457

RESUMO

Heavy machinery allows for the efficient, precise, and safe management of large-scale operations that are beyond the abilities of humans. Heavy machinery breakdowns or failures lead to unexpected downtime, increasing maintenance costs, project delays, and leading to a negative impact on personnel safety. Predictive maintenance is a maintenance strategy that predicts possible breakdowns of equipment using data analysis, pattern recognition, and machine learning. In this paper, vibration-based condition monitoring studies are reviewed with a focus on the devices and methods used for data collection. For measuring vibrations, different accelerometers and their technologies were investigated and evaluated within data collection contexts. The studies collected information from a wide range of sources in the heavy machinery. Throughout our review, we came across some studies using simulations or existing datasets. We concluded in this review that due to the complexity of the situation, we need to use more advanced accelerometers that can measure vibration.

12.
Sensors (Basel) ; 24(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257611

RESUMO

Predictive maintenance holds a crucial role in various industries such as the automotive, aviation and factory automation industries when it comes to expensive engine upkeep. Predicting engine maintenance intervals is vital for devising effective business management strategies, enhancing occupational safety and optimising efficiency. To achieve predictive maintenance, engine sensor data are harnessed to assess the wear and tear of engines. In this research, a Long Short-Term Memory (LSTM) architecture was employed to forecast the remaining lifespan of aircraft engines. The LSTM model was evaluated using the NASA Turbofan Engine Corruption Simulation dataset and its performance was benchmarked against alternative methodologies. The results of these applications demonstrated exceptional outcomes, with the LSTM model achieving the highest classification accuracy at 98.916% and the lowest mean average absolute error at 1.284%.

13.
Sensors (Basel) ; 23(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139571

RESUMO

Manufacturing systems are becoming increasingly flexible, necessitating the adoption of new technologies that allow adaptations to a turbulent and complex modern market. Consequently, modern concepts of production systems require horizontal and vertical integration, extending across value networks and within a factory or production shop. The integration of these environments enables the acquisition of a substantial amount of data containing information pertaining to production, processes, and equipment located on the shop floor. When these data and information are processed and analyzed, they have the potential to reveal valuable insights and knowledge about the manufacturing systems, offering interpretive outcomes for strategic decision making. One of the opportunities presented in this context includes the implementation of predictive maintenance (PdM). However, industrial adoption of PdM is still relatively low. In this paper, the aim is to propose a methodology for selecting the main attributes (variables) to be considered in the instrumentation setup of rotating machines driven by electric motors to decrease the associated costs and the time spent defining them. For this, the most well-known data science and machine learning algorithms are investigated to choose the one most adequate for this task. For the experiments, different testing scenarios were proposed to detect the different possible types of anomalies, such as uncoupled, overloaded, unbalanced, misaligned, and normal. The results obtained show how these algorithms can be effective in classifying the different types of anomalies and that the two models that presented the best accuracy values were k-nearest neighbor and multi-layer perceptron.

14.
Data Brief ; 50: 109569, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780463

RESUMO

Predictive Maintenance (PdM) has a main role in the Fourth Industrial Revolution; its goal is to design models that can safely detect failure in systems before they fail, aiming to reduce financial, environmental, and operational costs. A brushless DC (BLDC) electric motors have increasingly become more popular and been gaining popularity in industrial applications, so their analysis for PdM applications is only a natural progression; audio analysis proves to be a useful method to achieve this and rises as a very pragmatic case of study of the characteristics of the motors. The main goal of this paper is to showcase sound-based behavior of BLDC motors in different failure modes as result of an experiment led by researchers at Universidad del Cauca in Colombia. This dataset may provide researchers with useful information regarding signal processing and the development of Machine Learning applications that would achieve an improvement within Predictive Maintenance and I4.0.Predictive Maintenance (PdM) has a main role in the Fourth Industrial Revolution; its goal is to design models that can safely detect failure in systems before they fail, aiming to reduce financial, environmental, and operational costs. A brushless DC (BLDC) electric motors have increasingly become more popular and been gaining popularity in industrial applications, so their analysis for PdM applications is only a natural progression; audio analysis proves to be a useful method to achieve this and rises as a very pragmatic case of study of the characteristics of the motors. The main goal of this paper is to showcase sound-based behavior of BLDC motors in different failure modes as result of an experiment led by researchers at Universidad del Cauca in Colombia. This dataset may provide researchers with useful information regarding signal processing and the development of Machine Learning applications that would achieve an improvement within Predictive Maintenance and I4.0.

15.
Sensors (Basel) ; 23(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37896573

RESUMO

Predictive maintenance is a proactive approach to maintenance in which equipment and machinery are monitored and analyzed to predict when maintenance is needed. Instead of relying on fixed schedules or reacting to breakdowns, predictive maintenance uses data and analytics to determine the appropriate time to perform maintenance activities. In industrial applications, machine boxes can be used to collect and transmit the feature information of manufacturing machines. The collected data are essential to identify the status of working machines. This paper investigates the design and implementation of a machine box based on the ROS framework. Several types of communication interfaces are included that can be adopted to different sensor modules for data sensing. The collected data are used for the application on predictive maintenance. The key concepts of predictive maintenance include data collection, a feature analysis, and predictive models. A correlation analysis is crucial in a feature analysis, where the dominant features can be determined. In this work, linear regression, a neural network, and a decision tree are adopted for model learning. Experimental results illustrate the feasibility of the proposed smart machine box. Also, the remaining useful life can be effectively predicted according to the trained models.

16.
Sensors (Basel) ; 23(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765899

RESUMO

The emergence of Industry 4.0 has revolutionized the industrial sector, enabling the development of compact, precise, and interconnected assets. This transformation has not only generated vast amounts of data but also facilitated the migration of learning and optimization processes to edge devices. Consequently, modern industries can effectively leverage this paradigm through distributed learning to define product quality and implement predictive maintenance (PM) strategies. While computing speeds continue to advance rapidly, the latency in communication has emerged as a bottleneck for fast edge learning, particularly in time-sensitive applications such as PM. To address this issue, we explore Federated Learning (FL), a privacy-preserving framework. FL entails updating a global AI model on a parameter server (PS) through aggregation of locally trained models from edge devices. We propose an innovative approach: analog aggregation over-the-air of updates transmitted concurrently over wireless channels. This leverages the waveform-superposition property in multi-access channels, significantly reducing communication latency compared to conventional methods. However, it is vulnerable to performance degradation due to channel properties like noise and fading. In this study, we introduce a method to mitigate the impact of channel noise in FL over-the-air communication and computation (FLOACC). We integrate a novel tracking-based stochastic approximation scheme into a standard federated stochastic variance reduced gradient (FSVRG). This effectively averages out channel noise's influence, ensuring robust FLOACC performance without increasing transmission power gain. Numerical results confirm our approach's superior communication efficiency and scalability in various FL scenarios, especially when dealing with noisy channels. Simulation experiments also highlight significant enhancements in prediction accuracy and loss function reduction for analog aggregation in over-the-air FL scenarios.

17.
Sensors (Basel) ; 23(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514544

RESUMO

Nowadays, Predictive Maintenance is a mandatory tool to reduce the cost of production in the semiconductor industry. This paper considers as a case study a critical part of the electrochemical deposition system, namely, the four Pins that hold a wafer inside a chamber. The aim of the study is to replace the schedule of replacement of Pins presently based on fixed timing (Preventive Maintenance) with a Hardware/Software system that monitors the conditions of the Pins and signals possible conditions of failure (Predictive Maintenance). The system is composed of optical sensors endowed with an image processing methodology. The prototype built for this study includes one optical camera that simultaneously takes images of the four Pins on a roughly daily basis. Image processing includes a pre-processing phase where images taken by the camera at different times are coregistered and equalized to reduce variations in time due to movements of the system and to different lighting conditions. Then, some indicators are introduced based on statistical arguments that detect outlier conditions of each Pin. Such indicators are pixel-wise to identify small artifacts. Finally, criteria are indicated to distinguish artifacts due to normal operations in the chamber from issues prone to a failure of the Pin. An application (PINapp) with a user friendly interface has been developed that guides industry experts in monitoring the system and alerting in case of potential issues. The system has been validated on a plant at STMicroelctronics in Catania (Italy). The study allowed for understanding the mechanism that gives rise to the rupture of the Pins and to increase the time of replacement of the Pins by a factor at least 2, thus reducing downtime.

18.
Sensors (Basel) ; 23(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514798

RESUMO

The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity, efficiency, and financial performance. In line with the growing emphasis on sustainability, industries implement predictive techniques based on Artificial Intelligence for the purpose of mitigating machine and equipment failures by predicting anomalies during their production process. In this work, a new dataset that was made publicly available, collected from an industrial blower, is presented, analyzed and modeled using a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder. Specifically the right and left mounted ball bearing units were measured during several months of normal operational condition as well as during an encumbered operational state. An anomaly detection model was developed for the purpose of analyzing the operational behavior of the two bearing units. A stacked sparse Long Short-Term Memory Autoencoder was successfully trained on the data obtained from the left unit under normal operating conditions, learning the underlying patterns and statistical connections of the data. The model was evaluated by means of the Mean Squared Error using data from the unit's encumbered state, as well as using data collected from the right unit. The model performed satisfactorily throughout its evaluation on all collected datasets. Also, the model proved its capability for generalization along with adaptability on assessing the behavior of equipment similar to the one it was trained on.

19.
Sensors (Basel) ; 23(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514863

RESUMO

This article proposes the development of a novel tool that allows real-time monitoring of the balance of a press during the stamping process. This is performed by means of a virtual sensor that, by using the tonnage information in real time, allows us to calculate the gravity centre of a virtual load that moves the slide up and down. The present development follows the philosophy shown in our previous work for the development of industrialised predictive systems, that is, the use of the information available in the system to develop IIoT tools. This philosophy is defined as I3oT (industrializable industrial Internet of Things). The tonnage data are part of a set of new criteria, called Criterion-360, used to obtain this information. This criterion stores data from a sensor each time the encoder indicates that the position of the main axis has rotated by one degree. Since the main axis turns in a complete cycle of the press, this criterion allows us to obtain information on the phases of the process and easily shows where the measured data are in the cycle. The new system allows us to detect anomalies due to imbalance or discontinuity in the stamping process by using the DBSCAN algorithm, which allows us to avoid unexpected stops and serious breakdowns. Tests were conducted to verify that our system actually detects minimal imbalances in the stamping process. Subsequently, the system was connected to normal production for one year. At the end of this work, we explain the anomalies detected as well as the conclusions of the article and future works.

20.
J Imaging ; 9(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504802

RESUMO

Drop-on-demand printing using colloidal or pigmented inks is prone to the clogging of printing nozzles, which can lead to positional deviations and inconsistently printed patterns (e.g., data matrix codes, DMCs). However, if such deviations are detected early, they can be useful for determining the state of the print head and planning maintenance operations prior to reaching a printing state where the printed DMCs are unreadable. To realize this predictive maintenance approach, it is necessary to accurately quantify the positional deviation of individually printed dots from the actual target position. Here, we present a comparison of different methods based on affinity transformations and clustering algorithms for calculating the target position from the printed positions and, subsequently, the deviation of both for complete DMCs. Hence, our method focuses on the evaluation of the print quality, not on the decoding of DMCs. We compare our results to a state-of-the-art decoding algorithm, adopted to return the target grid positions, and find that we can determine the occurring deviations with significantly higher accuracy, especially when the printed DMCs are of low quality. The results enable the development of decision systems for predictive maintenance and subsequently the optimization of printing systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...